Канальцевая реабсорбция и ее регуляция. Фильтрационно-реабсорбционная теория В каком отделе нефрона происходит реабсорбция

💖 Нравится? Поделись с друзьями ссылкой

text_fields

text_fields

arrow_upward

Сравнение состава и количества первичной и конечной мочи пока­зывает, что в канальцах нефрона происходит процесс обратного всасывания воды и веществ, профильтровавшихся в клубочках. Этот процесс называется каналъцевой реабсорбцией

В зависимости от отдела канальцев, где он происходит, различают реабсорбцию про­ксимальную и дистальную .

Реабсорбция представляет собой транс­порт веществ из мочи в лимфу и кровь и в зависимости от меха­низма транспорта выделяют пассивную, первично и вторично ак­тивную реабсорбцию.

Проксимальная реабсорбция

text_fields

text_fields

arrow_upward

Проксимальная реабсорбция обеспечивает полное всасывание ряда веществ первичной мочи - глюкозы, белка, аминокислот и витаминов. В проксимальных отделах всасывается 2/3 профильтровав­шихся воды и натрия, большие количества калия, двухвалентных катионов, хлора, бикарбоната, фосфата, а также мочевая кислота и мочевина. К концу проксимального отдела в его просвете остается только 1/3 объема ультрафильтрата, и, хотя его состав уже существенно отличается от плазмы крови, осмотическое давление пер­вичной мочи остается таким же, как в плазме.

Всасывание воды происходит пассивно, по градиенту осмотичес­кого давления и зависит от реабсорбции натрия и хлорида. Реабсорбция натрия в проксимальном отделе осуществляется как актив­ным, так и пассивным транспортом. В начальном участке канальцев это активный процесс. Хотя натрий входит в клетки эпителия через апикальную мембрану пассивно через натриевые каналы по кон­центрационному и электрохимическому градиенту, его выведение через базолатеральные мембраны эпителиальных клеток происходит активно с помощью натрий-калиевых насосов, использующих энер­гию АТФ. Сопровождающим всасывающийся натрий анионом явля­ется здесь бикарбонат, а хлориды всасываются плохо. Объем мочи в канальце уменьшается из- за пассивной реабсорбции воды, и кон­центрация хлоридов в его содержимом растет. В конечных участках проксимальных канальцев межклеточные контакты высоко прони­цаемы для хлоридов (концентрация которых повысилась) и они пассивно по градиенту всасываются из мочи. Вместе с ними пас­сивно реабсорбируются натрий и вода. Такой пассивный транспорт одного иона (натрия) вместе с пассивным транспортом другого (хло­рида) носит название котранспорта.

Таким образом, в проксималь­ном отделе нефрона существуют два механизма всасывания воды и ионов:

1) активный транспорт натрия с пассивной реабсорбцией бикарбоната и воды,
2) пассивный транспорт хлоридов с пассивной реабсорбцией натрия и воды.

Поскольку натрий и другие электро­литы всегда всасываются в проксимальных канальцах с осмотически эквивалентным количеством воды, моча в проксимальных отделах нефрона остается изоосмотичной плазме крови.

Проксимальная реабсорбция глюкозы и аминокислот осуществля­ется с помощью специальных переносчиков щеточной каемки апи­кальной мембраны эпителиальных клеток. Эти переносчики транс­портируют глюкозу или аминокислоту только если одновременно связывают и переносят натрий. Пассивное перемещение натрия по градиенту внутрь клеток ведет к прохождению через мембрану и переносчика с глюкозой или аминокислотой. Для реализации этого процесса необходима низкая концентрация в клетке натрия, созда­ющая градиент концентрации между внешней и внутриклеточной средой, что обеспечивается энергозависимой работой натрий-кали­евого насоса базальной мембраны. Поскольку перенос глюкозы или аминокислоты связан с натрием, а его транспорт определяется ак­тивным удалением натрия из клетки, такой вид транспорта назы­вают вторично активным или симпортом, т.е. совместным пассив­ным транспортом одного вещества (глюкоза) из-за активного транс­порта другого (натрия) с помощью одного переносчика.

Поскольку для реабсорбции глюкозы необходимо связывание каж­дой ее молекулы с молекулой переносчика, очевидно, что при из­бытке глюкозы может произойти полная загрузка всех молекул пере­носчиков и глюкоза уже не сможет всасываться в кровь. Эта си­туация характеризуется понятием «максимальный канальцевый транс­ порт вещества», которое отражает максимальную загрузку канальцевых переносчиков при определенной концентрации вещества в пер­вичной моче и, соответственно, в крови. Постепенно повышая со­держание глюкозы в крови и тем самым в первичной моче, можно легко обнаружить ту величину ее концентрации, при которой глю­коза появляется в конечной моче и когда ее экскреция начинает линейно зависеть от прироста уровня в крови. Эта концентрация глюкозы в крови и, соответственно, ультрафильтрате свидетельствует о том, что все канальцевые переносчики достигли предела функци­ональных возможностей и полностью загружены. В это время реаб­сорбция глюкозы максимальна и составляет от 303 мг/мин у жен­щин и до 375 мг/мин у мужчин. Величине максимального канальцевого транспорта соответствует более старое понятие «почечный порог выведения».

Почечным порогом выведения называют ту концентрацию вещества в крови и в первичной моче, при которой оно уже не может быть полностью реабсорбировано в канальцах и появляется в конечной моче.

Такие вещества, для которых может быть найден порог вы­ведения, т.е. реабсорбирующиеся при низких концентрациях в крови полностью, а при повышенных концентрациях - не полностью, носят название пороговых. Типичным примером является глюкоза, которая полностью всасывается из первичной мочи при концентра­циях в плазме крови ниже 10 моль/л, но появляется в конечной моче, т.е. полностью не реабсорбируется, при содержании ее в плазме крови выше 10 моль/л. Следовательно, для глюкозы порог выведения составляет 10 моль/л.

Вещества, которые вообще не реабсорбируются в канальцах (ину­лин, маннитол) или мало реабсорбируются и выделяются пропорци­онально накоплению в крови (мочевина, сульфаты и др.), называ­ются непороговыми, т.к. для них порога выведения не существует.

Малые количества профильтровавшегося белка практически пол­ностью реабсорбируются в проксимальных канальцах с помощью пиноцитоза. Мелкие белковые молекулы абсорбируются на поверх­ности апикальной мембраны эпителиальных клеток и поглощаются ими с образованием вакуолей, которые передвигаясь сливаются с лизосомами. Протеолитические ферменты лизосом расщепляют поглощенный белок, после чего низкомолекулярные фрагменты и ами­нокислоты переносятся в кровь через базолатеральную мембрану клеток.

Дистальная реабсорбция

text_fields

text_fields

arrow_upward

Дистальная реабсорбция ионов и воды по объему значительно меньше проксимальной. Однако, существенно меняясь под влиянием регулирующих воздействий, она определяет состав конечной мочи и способность почки выделять либо концентрированную, либо разве­денную мочу (в зависимости от водного баланса организма). В дистальном отделе нефрона происходит активная реабсорбция на­ трия. Хотя здесь всасывается всего 10% от профильтровавшегося количества катиона, этот процесс обеспечивает выраженное умень­шение его концентрации в моче и, напротив, повышение концентрации в интерстициальной жидкости, что создает значительный гра­диент осмотического давления между мочой и интерстицием. Хлор всасывается преимущественно пассивно вслед за натрием. Способ­ность эпителия дистальных канальцев секретировать в мочу Н-ионы связана с реабсорбцией ионов натрия, этот вид транспорта в виде обмена натрия на протон получил название «антипорт». Активно всасывается в дистальном отделе канальцев калий, кальций и фос­ фаты. В собирательных трубочках, главным образом юкстамедуллярных нефронов, под влиянием вазопрессина повышается прони­цаемость стенки для мочевины и она, благодаря высокой концент­рации в просвете канальца, пассивно диффундирует в окружающее интерстициальное пространство, увеличивая его осмолярность. Под влиянием вазопрессина стенка дистальных извитых канальцев и собирательных трубочек становится проницаемой и для воды, в результате чего происходит ее реабсорбция по осмотическому гра­диенту в гиперосмолярный интерстиций мозгового вещества и далее в кровь.

Способность почки образовывать концентрированную или разве­денную мочу обеспечивается деятельностью противоточно-множи тельной канальцевой системы почки, которая представлена парал­лельно расположенными коленами петли Генле и собирательными трубочками (рис.12.2).

Цифрами обозначены величины осмотического давления интерстициальной жидкости и мочи. В собирательной трубочке цифрами в скобках обозначено осмотическое давление мочи в отсутствие вазопрессина (разведение мочи), цифрами без скобок - осмотическое давление мочи в условиях действия вазопрессина (концентрирование мочи).

Моча двигается в этих канальцах в противо­положных направлениях (почему систему и назвали противоточной), а процессы транспорта веществ в одном колене системы усиливаются («умножаются») за счет деятельности другого колена. Опреде­ляющую роль в работе противоточного механизма играет восходящее колено петли Генле, стенка которого непроницаема для воды, но активно реабсорбирует в окружающее интерстициальное простран­ство ионы натрия. В результате, интерстициальная жидкость стано­вится гиперосмотичной по отношению к содержимому нисходящего колена петли и по направлению к вершине петли осмотическое давление в окружающей ткани растет. Стенка же нисходящего ко­лена проницаема для воды, которая пассивно уходит из просвета в гиперосмотичный интерстиций. Таким образом, в нисходящем коле­не моча из-за всасывания воды становится все более и более ги­перосмотичной, т.е. устанавливается осмотическое равновесие с интерстициальной жидкостью. В восходящем колене, из-за всасывания натрия, моча становится все менее осмотичной и в корковый отдел дистального канальца восходит уже гипотоничная моча. Однако ее количество из-за всасывания воды и солей в петле Генле существенно уменьшилось.

Собирательная трубочка, в которую затем поступает моча, тоже образует с восходящим коленом петли Генле противоточную систе­му. Стенка собирательной трубочки становится проницаемой для воды только в присутствии вазопрессина. В этом случае, по мере продвижения мочи по собирательным трубочкам вглубь мозгового вещества, в котором нарастает осмотическое давление из-за всасы­вания натрия в восходящем колене петли Генле, все больше воды пассивно уходит в гиперосмотичный интерстиций и моча становится все более концентрированной.

Под влиянием вазопрессина реализуется еще один важный для концентрирования мочи механизм - пассивный выход мочевины из собирательных трубочек в окружающий интерстиций. Всасывание воды в верхних отделах собирательных трубочек ведет к нарастанию концентрации мочевины в моче, а в самых нижних их отделах, расположенных в глубине мозгового вещества, вазопрессин повыша­ет проницаемость для мочевины и она пассивно диффундирует в интерстиций, резко повышая его осмотическое давление. Таким образом, интерстиций мозгового вещества становится наиболее вы­соко осмотичным в области вершины почечных пирамид, где и происходит увеличение всасывания воды из просвета канальцев в интерстиций и концентрирование мочи.

Мочевина интерстициальной жидкости по концентрационному гра­диенту диффундирует в просвет тонкой восходящей части петли Генле и вновь поступает с током мочи в дистальные канальцы и собирательные трубочки. Так осуществляется кругооборот мочевины в канальцах, сохраняющих высокий уровень ее концентрации в мозговом веществе. Описанные процессы протекают в основном в юкстамедуллярных нефронах, имеющих наиболее длинные петли Генле, спускающиеся глубоко внутрь мозгового вещества почки.

В мозговом веществе почки имеется и другая - сосудистая про тивоточная система, образованная кровеносными капиллярами. По­скольку кровеносная сеть юкстамедуллярных нефронов образует длинные параллельные прямые нисходящие и восходящие капилляр­ные сосуды (рис. 12.1), спускающиеся вглубь мозгового вещества, двигающаяся по нисходящему прямому капиллярному сосуду кровь постепенно отдает воду в окружающее интерстициальное простран­ство в силу нарастающего осмотического давления в ткани и, напротив, обогащается натрием и мочевиной, сгущается и замедляет свое движение. В восходящем капиллярном сосуде по мере движе­ния крови в ткани с постепенно снижающимся осмотическим дав­лением происходят обратные процессы - натрий и мочевина по концентрационному градиенту диффундируют обратно в ткань, а вода всасывается в кровь. Таким образом, и эта противоточная система способствует поддержанию высокого осмотического давления в глу­боких слоях ткани мозгового вещества, обеспечивая удаление воды и удержание натрия и мочевины в интерстиций.

Деятельность описанных противоточных систем во многом зависит от скорости движения находящихся в них жидкостей (мочи или крови). Чем скорее будет двигаться моча по трубкам противоточной системы канальцев, тем меньшие количества натрия, мочевины и воды успеют реабсорбироваться в интерстиций и большие количе­ства менее концентрированной мочи будут выделяться почкой. Чем выше будет скорость кровотока по прямым капиллярным сосудам мозгового вещества почки, тем больше натрия и мочевины унесет кровь из почечного интерстиция, т.к. они не успеют диффундиро­вать из крови назад в ткань. Этот эффект называют «вымыванием» осмотически активных веществ из интерстиция, в результате его осмолярность падает, концентрирование мочи уменьшается и почкой выделяется больше мочи низкого удельного веса (разведение мочи). Чем медленнее происходит движение мочи или крови в мозговом веществе почек, тем больше осмотически активных веществ накап­ливается в интерстиции и выше способность почки концентрировать мочу.

Регуляция каналъцевой реабсорбции

text_fields

text_fields

arrow_upward

Регуляция каналъцевой реабсорбции осуществляется как нервным , так и, в большей мере, гуморальным путем.

Нервные влияния преимущественно реализуются симпатическими проводниками и медиаторами через бета- адренорецепторы мембран клеток проксимальных и дистальных канальцев. Симпатические эф­фекты проявляются в виде активации процессов реабсорбции глюкозы, натрия, воды и фосфатов и реализуются через систему вторичных посредников (аденилатциклаза - цАМФ). В регуляции процессов ме­таболизма почечной ткани существенную роль играют трофические влияния симпатической нервной системы. Нервная регуляция крово­обращения в мозговом веществе почки увеличивает или уменьшает эффективность сосудистой противоточной системы и концентрирова­ние мочи.

Сосудистые эффекты нервной регуляции могут опосредо­ваться через внутрипочечные системы гуморальных регуляторов - ренин- ангиотензинную, кининовую, простагландины и др. Основным фактором регуляции реабсорбции воды в дистальных отделах нефрона является гормон вазопрессин, называвшийся ранее антидиуретическим гормоном. Этот гормон образуется в супраоптическом и паравентрикулярных ядрах гипоталамуса и поступает в кровь из нейрогипофиза. Влияние вазопрессина на проницаемость эпителия канальцев обусловлено наличием рецепторов к гормону, относящихся к V-2 типу, на поверхности базолатеральной мембраны клеток эпи­телия. Образование гормон-рецепторного комплекса (глава 3), влечет за собой через посредство GS-белка и гуанилового нуклеотида акти­вацию аденилатциклазы и образование цАМФ у базолатеральной мем­браны (рис. 12.3).

Рис. 12.3. Механизм действия вазопрессина на проницаемость собирательных трубочек для воды.

Рис. 12.3. Механизм действия вазопрессина на проницаемость собирательных трубочек для воды.
Б-л мембрана - базолатеральная мембрана клеток,
А мембрана - апикальная мембрана,
ГН - гуанидиновый нуклеотид,АЦ - аденилатциклаза.

После этого цАМФ пересекает клетку эпителия и, достигнув апикальной мембраны, активирует цАМФ- зависимые протеинкиназы. Под влиянием этих ферментов происходит фосфорилирование мембранных белков, приводящее к повышению проницаемости для воды и увеличению поверхности мембраны. Перестройка ультра­структур клетки ведет к образованию специализированных вакуолей, переносящих большие потоки воды по осмотическому градиенту от апикальной к базолатеральной мембране, не позволяя самой клетке набухать. Такой транспорт воды через клетки эпителия реализуется вазопрессином в собирательных трубочках. Кроме того, в дистальных канальцах вазопрессин обусловливает активацию и выход из клеток гиалуронидаз, вызывающих расщепление гликозаминогликанов основ­ного межклеточного вещества и межклеточный пассивный транспорт воды по осмотическому градиенту.

Канальцевая реабсорбция воды

text_fields

text_fields

arrow_upward

Канальцевая реабсорбция воды регулируется и другими гормона­ми.

С учетом механизмов действия все гормоны, регулирующие реабсорбцию воды, можно представить в виде шести групп:

1) повышающие проницаемость мембран дистальных отделов нефрона для воды (вазопрессин, пролактин, хорионический гонадотропин);

2) меняющие чувствительность клеточных рецепторов к вазопрессину (паратирин, кальцитонин, кальцитриол, простагландины, альдостерон);

3) меняющие осмотический градиент интерстиция мозгового слоя почки и, соответственно, пассивный осмотический транспорт воды (паратирин, кальцитриол, тиреоидные гормоны, инсулин, вазопрессин);

4) меняющие активный транспорт натрия и хлорида, а за счет этого и пассивный транспорт воды (альдостерон, вазопрессин, атриопептид, прогестерон, глюкагон, кальцитонин, простагландины);

5) повышающие осмотическое давление канальцевой мочи за счет нереабсорбированных осмотически активных веществ, например глю­козы (контринсулярные гормоны);

6) меняющие кровоток по прямым сосудам мозгового.вещества и, тем самым, накопление или «вымывание» осмотически активных веществ из интерстиция (ангиотензин- II, кинины, простагландины, паратирин, вазопрессин, атриопептид).

Канальцевая реабсорбция электролитов

text_fields

text_fields

arrow_upward

Канальцевая реабсорбция электролитов, также как и воды, регу­лируется преимущественно гормональными, а не нервными влия­ниями.

Реабсорбция натрия в проксимальных канальцах активируется альдостероном и угнетается паратирином, в толстой части восходящего калена петли Генле реабсорбция натрия активируется вазопрессином, глюкагоном, кальцитонином, а угнетается простагландинами Е. В дистальном отделе канальцев основными регуляторами транспорта натрия являются альдостерон (активация), простагландины и атриопептид (угнетение).

Регуляция канальцевого транспорта кальция, фосфата и частично магния обеспечивается, в основном, кальций-регулирующими гормонами. Паратирин имеет в канальцевом аппа­рате почки несколько участков действия. В проксимальных каналь­цах (прямой отдел) всасывание кальция происходит параллельно с транспортом натрия и воды. Угнетение реабсорбции натрия в этом отделе под влиянием паратирина сопровождается параллельным сни­жением реабсорбции кальция. За пределами проксимального каналь­ца паратирин избирательно усиливает реабсорбцию кальция, особен­но в дистальном извитом канальце и корковой части собирательных трубочек. Реабсорбция кальция активируется также кальцитриолом, а подавляется кальцитонином. Всасывание фосфата в канальцах почки угнетается и паратирином (проксимальная реабсорбция), и кальци­тонином (дистальная реабсорбция), а усиливается кальцитриолом и соматотропином. Паратирин активирует реабсорбцию магния в кор­ковой части восходящего колена петли Генле и тормозит прокси­мальную реабсорбцию бикарбоната.

Канальцевая реабсорбция – обратное всасывание воды и других биологически активных веществ из ультрафильтрата (первичной мочи), происходящее в канальцах при образовании окончательной (пузырной) мочи почками. Канальцевая реабсорбция тесно связана с концентрационной и водовыделительной функциями почек. В первом случае обеспечивается осмотическое давление мочи, превышающее осмотическое давление плазмы крови. В последнем случае особенно важна для поддержания постоянства гомеостаза водосберегающая роль почек. При этом вода в значительно больших количествах реабсорбируется в канальцах, чем натрий, хлориды, глюкоза, бикарбонаты и другие осмотически активные вещества. В проксимальном отделе канальцевого аппарата около 80-90% воды ультрафильтрата всасывается обратно в кровь и лишь 10-20% поступает в следующие отделы нефрона (петлю Генле). В свою очередь, степень всасывания воды определяется осмотическим давлением в проксимальном отделе нефрона, которое регулируется натрием – основным катионом первичной мочи. Чем больше фильтрация, тем выше и реабсорбция.

В дистальном отделе нефрона вода реабсорбируется не за счет натрия, а под влиянием антидиуретического гормона гипофиза (антидиуретический рефлекс). В свою очередь секреция антидиуретического гормона зависит от осмотического давления внеклеточной жидкости и крови. Следующим механизмом обратного всасывания является форникальная реабсорбция, зависящая во многом от гидростатического давления в чашечно-лоханочной системе и от осмотического градиента между мочой и интерстицием мозгового слоя почки, особенно зоны сосочка. Форникальная реабсорбция существенно усиливается при полиурии.

Канальцевая реабсорбция играет большую роль в регуляции электролитов крови (натрия, хлора, бикарбонатов и д.) и, прежде всего, в их сохранении для обеспечения постоянства ее химического состава. Большая часть натрия и хлора реабсорбируется в проксимальном отделе канальцевого аппарата. Калий, также почти полностью всасываясь из первичной мочи в проксимальных канальцах, затем вновь появляется в моче дистального отдела нефрона за счет активной экскреции клетками эпителия. При этом низкий уровень калия в моче угнетает его реабсорбцию, а высокий - снижает его экскрецию.
В практической урологии для оценки функции почек используют показатель канальцевой реабсорбции воды (в %), определяемый по формуле:

Где R H20 – реабсорбция воды в канальцах (%),
С- клиренс (величина клубочковой фильтрации в мл/мин),
V - диурез (мл/мин).
При нормальной функции почек показатель канальцевой реабсорбции воды равен 97-99%.

Оглавление темы "Проксимальная реабсорбция натрия. Реабсорбция в дистальном канальце. Состав конечной мочи. Свойства мочи. Анализ мочи. Нормальный анализ мочи.":
1. Проксимальная реабсорбция натрия. Антипорт. Котранспорт. Реабсорбция глюкозы. Реабсорбция аминокислот. Симпорт.
2. Дистальная реабсорбция ионов и воды. Реабсорбция в дистальном канальце.
3. Противоточно-множительная канальцевая система почки. Действие вазопрессина на почку.
4. Противоточная сосудистая система мозгового вещества почки.

6. Регуляция реабсорбции ионов натрия. Альдостерон. Регуляция транспорта ионов кальция, фосфата, магния.
7. Канальцевая секреция. Регуляция канальцевой секреции. Секреция водородных ионов. Секреция ионов калия. Эффективный почечный плазмоток.
8. Состав конечной мочи. Свойства мочи. Суточный диурез. Анализ мочи. Нормальный анализ мочи. Норма анализа мочи.
9. Выведение мочи. Мочеиспускание. Опорожнение мочевого пузыря. Механизмы выведения мочи и мочеиспускания.
10. Экскреторная функция почек.

Регуляция канальцевой реабсорбции осуществляется как нервным, так и, в большей мере, гуморальным путем.

Нервные влияния реализуются преимущественно симпатическими проводниками и медиаторами через бета-адренорецепторы мембран клеток проксимальных и дистальных канальцев. Симпатические эффекты проявляются в виде активации процессов реабсорбции глюкозы, ионов натрия, воды и анионов фосфатов и осуществляются через систему вторичных посредников (аденилатциклаза - цАМФ). Нервная регуляция кровообращения в мозговом веществе почки увеличивает или уменьшает эффективность сосудистой противоточной системы и концентрирование мочи. Сосудистые эффекты нервной регуляции также опосредуются через внутри-почечные системы гуморальных регуляторов - ренин-ангиотензиновую, кининовую, простагландины и др.

Основным фактором регуляции реабсорбции воды в дистальных отделах нефрона является гормон вазопрессин , называвшийся ранее антидиуретическим гормоном. Этот гормон образуется в супраоптическом и паравен-трикулярных ядрах гипоталамуса, по аксонам нейронов транспортируется в нейрогипофиз, откуда и поступает в кровь. Влияние вазопрессина на проницаемость эпителия канальцев обусловлено наличием рецепторов к гормону, относящихся к V2-типу, на поверхности базолатеральной мембраны клеток эпителия. Образование гормон-рецепторного комплекса влечет за собой через посредство GS-белка и гуанилового нуклеотида активацию аденилатциклазы и образование цАМФ, активацию синтеза и встраивания аквапоринов 2-го типа («водных каналов ») в апикальную мембрану клеток эпителия собирательных трубочек. Перестройка ультраструктур мембраны и цитоплазмы клетки ведет к образованию внутриклеточных специализированных структур, переносящих большие потоки воды по осмотическому градиенту от апикальной к базолатеральной мембране, не позволяя транспортируемой воде смешиваться с цитоплазмой и препятствуя набуханию клетки. Такой трансцеллюлярный транспорт воды через клетки эпителия реализуется вазопрессином в собирательных трубочках. Кроме того, в дистальных канальцах вазопрессин обусловливает активацию и выход из клеток гиалуронидаз, вызывающих расщепление гликозаминогликанов основного межклеточного вещества, тем самым способствуя межклеточному пассивному транспорту воды по осмотическому градиенту.

Таблица 14.1. Основные гуморальные влияния на процессы мочеобразования

Канальцевая реабсорбция воды регулируется и другими гормонами (табл. 14.1). По механизму действия все гормоны, регулирующие реабсорбцию воды , делятся на шесть групп:
повышающие проницаемость мембран дистальных отделов нефрона для воды (вазопрессин, пролактин, хорионический гонадотропин);
меняющие чувствительность клеточных рецепторов к вазопрессину (паратирин, кальцитонин, кальцитриол, простагландины, альдостерон );
меняющие осмотический градиент интерстиция мозгового слоя почки и, соответственно, пассивный осмотический транспорт воды (паратирин, кальцитриол, тиреоидные гормоны, инсулин, вазопрессин);
меняющие активный транспорт натрия и хлорида , а за счет этого и пассивный транспорт воды (альдостерон, вазопрессин, атриопептид, прогестерон, глюкагон, кальцитонин, простагландины);
повышающие осмотическое давление канальцевой мочи за счет нере-абсорбированных осмотически активных веществ, например глюкозы (контринсулярные гормоны);
меняющие кровоток по прямым сосудам мозгового вещества и, тем самым, накопление или «вымывание» осмотически активных веществ из интерстиция (ангиотензин-П, кинины, простагландины, паратирин, вазопрессин, атриопептид).

Почки в человеческом теле выполняют ряд функций: это и регуляция объема крови и межклеточной жидкости, и удаление продуктов распада, и стабилизация кислотно-щелочного баланса, и регуляция водно-солевого равновесия и так далее. Все эти задачи решаются благодаря мочеобразованию. Канальцевая реабсорбция – один из этапов этого процесса.

Канальцевая реабсорбция

За сутки почки пропускают до 180 л первичной мочи. Эта жидкость из тела не выводится: так называемый фильтрат проходит сквозь канальцы, где практически вся жидкость всасывается, а необходимые для жизнедеятельности вещества – аминокислоты, микроэлементы, витамины, возвращаются в кровь. Продукты распада и обмена удаляются со вторичной мочой. Объем ее намного меньше – около 1,5 л за сутки.

Эффективность почки как органа во многом определяется эффективностью канальцевой реабсорбции. Чтобы представить себе механизм процесса, необходимо разобраться в строении – почечной единицы.

Строение нефрона

«Рабочая» клетка почки состоит из следующих частей.

  • Почечное тельце – клубочковая капсула, внутри расположены капилляры.
  • Проксимальный извитый каналец.
  • Петля Генле – складывается из нисходящей и восходящей части. Тонкая нисходящая располагается в мозговом веществе, изгибается под 180 градусов с тем, чтобы подняться в корковое вещество до уровня клубочка. Эта часть формирует восходящую тонкую и толстую части.
  • Дистальный извитый каналец.
  • Конечный отдел – короткий фрагмент, соединенный с собирательной трубкой.
  • Собирательная трубка – размещается в мозговом веществе, отводит вторичную мочу в почечную лоханку.

Общий принцип размещения таков: в корковом веществе размещаются почечные клубочки, проксимальный и дистальный канальцы, в мозговом – нисходящие и толстые восходящие части и собирательные трубки. Во внутреннем мозговом веществе остаются тонкие отделы, собирательные трубки.
На видео строение нефрона:

Механизм реабсорбции

Для осуществления канальцевой реабсорбции задействуются молекулярные механизмы, аналогичные перемещению молекул через плазматические мембраны: диффузия, эндоцитоз, пассивный и активный транспорт и так далее. Самый значимый – активный и пассивный транспорт.

Активный – проводится против электрохимического градиента. Для его реализации требуется энергия и специальные транспортные системы.

Рассматривают 2 вида активного транспорта:

  • Первично-активный – в ход идет энергия, выделяющаяся при расщеплении аденозинтрифосфорной кислоты. Таким образом перемещаются, например, ионы натрия, кальция, калия, водорода.
  • Вторично-активный – на перенос энергия не тратится. Движущей силой выступает разница в концентрации натрия в цитоплазме и просвете канальца.Переносчик обязательно включает в себя ион натрия. Таким способом через мембрану проходит глюкоза и аминокислоты. Разница в количестве натрия – меньше в цитоплазме, чем снаружи, объясняется выводом натрия в межклеточную жидкость с участием АТФ.

После преодоления мембраны комплекс расщепляется на переносчик – специальный белок, ион натрия и глюкозу. Переносчик возвращается в клетку, где готов присоединить следующий ион металла. Глюкоза же из межклеточной жидкости следует в капилляры и возвращается в кровоток. Реабсорбируется глюкоза только в проксимальном отделе, поскольку лишь здесь формируется требуемый переносчик.

Аминокислоты всасываются по аналогичной схеме. А вот процесс реабсорбции белка сложнее: белок поглощается путем пиноцитоза – захвата жидкости клеточной поверхностью, в клетке распадается на аминокислоты, а затем следует в межклеточную жидкость.

Пассивный транспорт – всасывание производится по электрохимическому градиенту и в поддержке не нуждается: например, всасывание ионов хлора в дистальном канальце. Возможно перемещение по концентрационному, электрохимическому, осмотическому градиентам.

На деле реабсорбция производится по схемам, включающим самые разные способы транспортировки. Причем в зависимости от участка нефрона абсорбироваться вещества могут по-разному или не поглощаться вовсе.

Например, вода усваивается в любом отделе нефрона, но разными методами:

  • около 40–45% воды всасывается в проксимальных канальцах по осмотическому механизму – вслед за ионами;
  • 25–28% воды поглощается в петле Генле по поворотно-протипоточному механизму;
  • в дистальных извитых канальцах поглощается до 25% воды. Причем если в двух предыдущих отделах поглощение воды производится вне зависимости от водной нагрузки, то в дистальных процесс регулируется: вода может выводиться со вторичной мочой или удерживаться.

Объем вторичной мочи достигает всего лишь 1% от первичного объема.
На видео процесс реабсорбции:

Движение реабсорбируемого вещества


Различают 2 метода перемещения реабсорбируемого вещества в межклеточную жидкость:

  • парацеллюрный – переход производится через одну мембрану между двумя плотно соединенными клетками. Это, например, диффузия, или перенос с растворителем, то есть, пассивный транспорт;
  • трансцеллюрный – «через клетку». Вещество преодолевает 2 мембраны: люминальную или апикальную, которая отделяет фильтрат в просвете канальца от клеточной цитоплазмы, и базолатеральную, выступающую барьером между интерстициальной жидкостью и цитоплазмой. Хотя бы один переход реализуется по механизму активного транспорта.

Виды

В разных отделах нефрона реализуются разные методы реабсорбции. Поэтому на практике часто используют разделение по особенностям работы:

  • проксимальный отдел – извитая часть проксимального канальца;
  • тонкий – части петли Генле: тонкая восходящая и нисходящая;
  • дистальный – дистальный извитый каналец, соединяющий и толстая восходящая часть петли Генле.

Проксимальная

Здесь поглощается до 2/3 воды, а также глюкоза, аминокислоты, белки, витамины, большое количество ионов кальция, калия, натрия, магния, хлора. Проксимальный каналец – основной поставщик глюкозы, аминокислот и белков в кровь, так что этот этап является обязательным и независим от нагрузки.

Схемы реабсорбции применяются разные, что определяется видом всасываемого вещества.

Глюкоза в проксимальном канальце поглощается практически полностью. Из просвета канальца в цитоплазму она следует через люминальную мембрану посредством контртранспорта. Это вторичный активный транспорт, для которого нужна энергия. Используется та, что выделяется при перемещении иона натрия по электрохимическому градиенту. Затем глюкоза проходит сквозь базолатеральную мембрану методом диффузии: глюкоза накапливается в клетке, что обеспечивает разницу в концентрации.

Энергия нужна при переходе сквозь люминальную мембрану, перенос через вторую мембрану энергетических затрат не требует. Соответственно, главным фактором поглощения глюкозы оказывается первично-активный транспорт натрия.

По такой же схеме реабсорбируются аминокислоты, сульфат, неорганический фосфат кальция, питательные органические вещества.

Низкомолекулярные белки оказываются в клетке посредством пиноцитоза и в клетке распадаются на аминокислоты и дипептиды. Этот механизм не обеспечивает 100% всасывания: часть белка остается в крови, а часть удаляется с мочой – до 20 г в сутки.

Слабые органические кислоты и слабые основания из-за низкой степени диссоциации реабсорбируются методом неионной диффузии. Вещества растворяются в липидном матриксе и поглощаются по концентрационному градиенту. Всасывание зависит от уровня pH: при его уменьшении диссоциация кислоты падает, а диссоциация оснований повышается. При высоком уровне pH увеличивается диссоциация кислот.

Эта особенность нашла применение при выводе ядовитых веществ: при отравлении в кровь вводят препараты, защелачивающие ее, что увеличивает степень диссоциации кислот и помогает вывести их с мочой.

Петля Генле

Если в проксимальном канальце ионы металлов и вода реабсорбируются практически в одинаковых долях, то в петле Генле всасывается в основном натрий и хлор. Воды же поглощается от 10 до 25%.

В петле Генле реализуется поворотно-протипоточный механизм, основанный на особенности расположения нисходящей и восходящей части. Нисходящая часть не поглощает натрий и хлор, но остается проницаемой для воды. Восходящая всасывает ионы, но для воды оказывается непроницаемой. В итоге всасывание хлорида натрия восходящей частью определяет степень поглощения воды нисходящей частью.

Первичный фильтрат попадает в начальную часть нисходящей петли, где осмотическое давление ниже по сравнению с давлением межклеточной жидкости. Моча спускается по петле, отдавая воду, но сохраняя ионы натрия и хлора.

Поскольку вода выводится, осмотическое давление в фильтрате растет и достигает максимального значения в поворотной точке. Затем моча следует по восходящему участку, сохраняя воду, но теряя ионы натрия и хлора. В дистальный каналец моча попадает гипоосмотическая – до 100–200 мосм/л.

По сути, в нисходящем отделе петли Генле моча концентрируется, а в восходящей – разводится.

На видео строение петли Гентле:

Дистальная

Дистальный каналец слабо пропускает воду, а органические вещества здесь вовсе не всасываются. В этом отделе производится дальнейшее разведение. В дистальный каналец попадает около 15% первичной мочи, а выводится около 1%.

По мере перемещения по дистальному канальцу она становится все более гиперосмотичной, поскольку здесь поглощаются в основном ионы и частично вода – не более 10%. Разведение продолжается в собирательных трубках, где и формируется конечная моча.

Особенностью работы этого сегмента является возможность регулировки процесса всасывания воды и ионов натрия. Для воды регулятором является антидиуретический гормон, а для натрия – альдостерон.

Норма

Для оценки функциональности почки используются различные параметры: биохимический состав крови и мочи, величина концентрационной способности, а также парциальные показатели. К последним и относят и показатели канальцевой реабсорбции.

Скорость клубочковой фильтрации – указывает на выделительные способности органа, это скорость фильтрации первичной мочи, не содержащей белок, через клубочковый фильтр.

Канальцевая реабсорбция указывает на всасывающие способности. Обе эти величины не постоянны и изменяются в течение суток.

Норма СКФ – 90–140 мл/мин. Наиболее высок ее показатель днем, снижается к вечеру, а утром находится на самом низком уровне. При физической нагрузке, потрясениях, почечной или сердечной недостаточности и других недугах СКФ падает. Может увеличиваться на начальных стадиях сахарного диабета и при гипертонии.

Канальцевая реабсорбция не измеряется непосредственно, а рассчитывается как разность между СКФ и минутным диурезом по формуле:

Р = (СКФ – Д) x 100 / СКФ, где,

  • СКФ – скорость клубочковой фильтрации;
  • Д – минутный диурез;
  • Р – канальцевая реабсорбция.

При снижении объема крови – операция, потеря крови, наблюдается повышение канальцевой реабсорбции в сторону роста. На фоне приема диуретиков, при некоторых почечных недугах – уменьшается.

Нормой для канальцевой реабсорбции является 95–99%. Отсюда и столь большая разница между объемом первичной мочи – до 180 л, и объемом вторичной – 1–1,5 л.

Для получения этих величин прибегают к пробе Реберга. С ее помощью вычисляют клиренс – коэффициент очищения эндогенного креатинина.По этому показателю вычисляют СКФ и величину канальцевой реабсорбции.

Пациент удерживается в лежачем положении на протяжении 1 часа. За это время собирается моча. Анализ проводится натощак.

Через полчаса из вены берут кровь.

Затем в моче и крови находят количество креатинина и вычисляют СКФ по формуле:

СКФ = М x Д / П, где

  • М – уровень креатинина в моче;
  • П – уровень вещества в плазме
  • Д – минутный объем мочи. Рассчитывается делением объема на время выделения.

По данным можно классифицировать степень повреждения почки:

  • Уменьшение скорости фильтрации до 40 мл/мин является признаком почечной недостаточности.
  • Уменьшение СКФ до 5–15 мл/мин свидетельствует о терминальной стадии недуга.
  • Уменьшение КР обычно следует после водной нагрузки.
  • Рост КР связан с уменьшением объема крови. Причиной может быть потеря крови, а также нефриты – при таком недуге повреждается клубочковый аппарат.

Нарушение канальцевой реабсорбции

Регуляция канальцевой реабсорбции

Кровообращение в почках выступает процессом относительно автономным. При изменениях АД от 90 до 190 мм. рт. ст. давление в почечных капиллярах удерживается на обычном уровне. Объясняется такая стабильность разницей в диаметре между приносящими и выносящими кровеносными сосудами.

Выделяют два наиболее значимых метода: миогенная ауторегуляция и гуморальная.

Миогенная – при росте АД стенки приносящих артериол сокращаются, то есть, в орган поступает меньший объем крови и давление падает. Сужение чаще всего вызывает ангиотензин II, таким же образом воздействуют тромбоксаны и лейкотриены. Сосудорасширяющими веществами выступают ацетилхолин, дофамин и так далее. В результате их действия нормализуется давление в клубочковых капиллярах с тем, чтобы удерживать нормальный уровень СКФ.

Гуморальная – то есть, при помощи гормонов. По сути, главным показателем канальцевой реабсорбции выступает уровень всасывания воды. Процесс этот можно разделить на 2 этапа: обязательный – тот, что проводится в проксимальных канальцах и независим от водной нагрузки, и зависимый – реализуется в дистальных канальцах и собирательных трубочках. Этот этап регулируется гормонами.

Главный среди них – вазопрессин, антидиуретический гормон. Он сохраняет воду, то есть, способствует задержке жидкости. Синтезируется гормон в ядрах гипоталамуса, перемещается в нейрогипофиз, а оттуда попадает в кровоток. В дистальных отделах имеются рецепторы к АДГ. Взаимодействие вазопрессина с рецепторами приводит к улучшению проницаемости мембран для воды, благодаря чему она поглощается лучше. При этом АДГ не только увеличивает проницаемость, но и определяет уровень проницаемости.

За счет разницы давлений в паренхиме и дистальном канальце вода из фильтрата остается в теле. Но на фоне низкой всасываемости ионов натрия диурез может оставаться высоким.

Всасывание ионов натрия регламентирует альдостерон – , а также натрийуретический гормон.

Альдестерон способствует канальцевой реабсорбции ионов и образуется при снижении уровня ионов натрия в плазме. Гормон регулирует создание всех требуемых для переноса натрия механизмов: канала апикальной мембраны, переносчика, составляющих натрий-калиевого насоса.

Особенно сильно его воздействие на участке собирательных трубочек. «Работает» гормон как в почках, так и в железах, и в ЖКТ, улучшая всасывание натрия. Также альдостерон регулирует чувствительность рецепторов к АДГ.

Альдостерон появляется и по другой причине. При снижении АД синтезируется ренин – вещество, контролирующее тонус сосудов. Под влиянием ренина аг-глобулин из крови трансформируется в ангиотензин I, а затем в ангиотензин II. Последний выступает сильнейшим сосудосуживающим веществом. Кроме того, он запускает выработку альдостерона, обуславливающего реабсорбцию ионов натрия, что вызывает задержку воды. Этот механизм – задержка воды и сужение сосудов, создает оптимальное АД и нормализует кровоток.

Натрийуретический гормон образуется в предсердии при его растяжении. Оказавшись в почках, вещество уменьшает реабсорбцию ионов натрия и воды. При этом количество воды, которое попадает во вторичную мочу увеличивается, что уменьшает общий объем крови, то есть, растяжение предсердий исчезает.

Кроме того, на уровень канальцевой реабсорбции оказывают воздействие и другие гормоны:

  • паратгормон – улучшает всасывание кальция;
  • тиреокальцийтонин – снижает уровень реабсорбции ионов этого металла;
  • адреналин – его влияние зависит от дозы: при малом количестве адреналин снижает СКФ фильтрацию, в большой дозе – здесь канальцевая реабсорбция повышена;
  • тироксин и соматропный гормон – усиливают диурез;
  • инсулин – улучшает поглощение ионов калия.

Механизм влияния разный. Так, пролактин повышает проницаемость клеточной мембраны для воды, а паратирин изменяет осмотический градиент интерстиция, тем самым влияя на осмотический транспорт воды.

Канальцевая реабсорбция – механизм, обуславливающий возвращение воды, микроэлементов и питательных веществ в кровь. Осуществляется возврат — реабсорбция, на всех участках нефрона, но по разным схемам.

Еще в 1842 г немецкий физиолог К. Людвиг предполагал, что мочеобразование состоит из 3-х процессов. В 20-х годах ХХ столетия американский физиолог А. Ричардс подтвердил это предположение.

Образование конечной мочи является результатом трех последовательных процессов:

I. В почечных клубочках происходит начальный этап мочеобразования - клубочковая, или гломерулярная ультрофильтрация безбелковой жидкости из плазмы крови в капсулу почечного клубочка, в результате чего образуется первичная моча.

II. Канальцевая реабсорбция - процесс обратного всасывания профильтровавшихся веществ и воды.

III. Секреция . Клетки некоторых отделов канальца переносят из внеклеточной жидкости в просвет нефрона (секретируют) ряд органических и неорганических веществ либо выделяют в просвет канальца молекулы, синтезированные в клетке канальца.

I .ГЛОМЕРУЛЯРНАЯ ФИЛЬТРАЦИЯ

Образование мочи начинается с клубочковой фильтрации, т.е. переноса жидкости от гломерулярных капилляров в боуменову капсулу, при этом жидкость проходит через клубочковый фильтр.

Фильтрующая мембрана . Фильтрационный барьер в почечном тельце состоит из трех слоев: эндотелий гломерулярных капилляров, базальная мембрана и однорядный слой эпителиальных клеток, выстилающих капсулу Боумена. Первый слой, эндотелиальные клетки капилляров, перфорирован множеством отверствий ("окон" или "фенестров")(d пор 40 – 100 нм). Базальная мембрана это гелеподобное, бесклеточное ячеистое образование, состоящее из гликопротеинов и протеогликанов. Клетки эпителия капсулы, которые покоятся на базальной мембране, носят название подоцитов. У подоцитов необычное осьминогоподобное строение, в результате чего они имеют множество пальцевидных отростков, вдавленных в базальную мембрану. Щелевидные пространства между расположенными рядом пальцевидными отростками представляют собой проходы, по которым фильтрат, пройдя эндотелиальные клетки и базальную мембрану, проникает в боуменово пространство(d щелей между педикулами подоцитов 24-30 нм)

В базальной мембране имеются поры(d пор 2,9 – 3,7 нм) , которые ограничивают прохождение форменных элементов крови, а также крупных молекул более 5-6 мм (молекул. вес больше 70000 Да: фильтруются молекулы, имеющие м.м. менее 70 000 Да: все минеральные вещества, органические соединения (за исключением крупномолекулярных белков, липоидов)

Поэтому крупные белки, такие как глобулины (мол.вес 160000) и казеины (мол. вес 100000) в фильтрат не поступают. Альбумины плазмы крови (мол.вес около 70000) проходят в фильтрат в ничтожном количестве. В просвет капсулы нефрона проникает инулин около 22% яичного альбумина, 3% гемоглобина и менее 0,01 % сывороточного альбумина (в случае гемолиза) таким образом, происходит фильтрация. Свободному прохождению белков через гломерулярный фильтр препятствует отрицательно заряженные молекулы в веществе базальной мембраны и выстилке, лежащей на поверхности подоцитов, поскольку подавляющее число белков плазмы несет почти только отрицательные электрические заряды. При определенной форме патологии почки, когда на мембранах исчезает отрицательный заряд, становятся "проницаемыми" по отношению к белкам.

Проницаемость гломерулярного фильтра определяется минимальным размером молекул, которые способны фильтроваться и зависит от:1) размера пор;2) заряда пор (базальная мембрана – анионит);3) гемодинамических условий; 4) работы педикул подоцитов(в них имеются актомиозиновые нити) и мезангиальных клеток.

По своему составу ультрафильтрат - первичная моча изотонична плазме крови. Неорганические соли и низкомолекулярные органические соединения (мочевина, мочевая кислота, глюкоза, аминокислоты, креатинин) - свободно проходят через клубочковый фильтр и поступают в полость капсулы Боумена. Основной силой, обеспечивающей возможность ультрафильтрации в почечных клубочках, является гидростатическое давление крови в сосудах. Его величина обусловлена тем, что приносящая артериола - больше по диаметру, чем выносящая, а также тем, что почечные артерии отходят от брюшного отдела аорты.

Площадь фильтрации в двух почках составляет 1,5 м 2 на 100 г ткани (т.е.почти равна поверхности тела.-S тела 1,73 м 2). Зависит от : 1) площади поверхности капилляров; 2) количества пор (больше, чем в любом другом органе; на их долю приходится до 30% поверхности эндотелиальных клеток);3) количества функционирующих нефронов.

Эффективное фильтрационное давление (ЭФД) , от которого зависит скорость клубочковой фильтрации, определяется разностью между ГДК (гидростатическое давление крови) в капиллярах клубочка (у человека от 60-90 мм.рт.ст.) и противодействующими ему факторами - онкотическим давлением белков плазмы крови (ОДК равно 30 мм.рт.ст.) и гидростатическим давлением жидкости (или ультрафильтрата) или в капсуле клубочка около 20 мм.рт.ст.

ЭФД= ГДК- (ОДК+ ГДУ)

ЭФД = 70 мм.рт.ст. - (30 мм.рт.ст.+ 20 мм.рт.ст.) = 20мм.рт.ст .

ЭФД может варьировать от 20 до 30 мм.рт.ст. Фильтрация происходит только в том случае, если давление крови в капиллярах клубочков превышает сумму онкотического давления белков в плазме и давления жидкости в капсуле клубочка. При повышении фильтрационного давления диурез увеличивается, при понижении - уменьшается. Давление крови в капиллярах клубочков и кровоток через них почти не изменяются, так как при повышении системного артериального давления тонус приносящей артериолы возрастает, а при понижении системного давления ее тонус уменьшается (эффект Остроумова - Бейлиса).

Факторы определяющие фильтрацию

Почечные факторы

К-во функционирующих клубочков

Диаметр приносящего и выносящего сосудов

Давление фильтрата в капсуле

Внепочечные факторы

Общее функциональное состояние системы кровообращения, к-во циркулирующей крови, величина АД и скорость кровотока

Степень гидратации организма. Осмотическое и онкотическое давление.

Функционирование других механизмов выведения мочи(потовые железы)

Количество первичной мочи - 150-180 л/сутки . Через почки в сутки протекает 1700 литров крови. Скорость клубочковой фильтрации 125 мл/мин у мужчин и 110мл/мин у женщин. Таким образом, около 180 литров в сутки. Средний общий объем плазмы в организме человека составляет примерно 3 л, это означает, что вся плазма фильтруется в почках около 60 раз в сутки. Способность почек фильтровать такой огромный объем плазмы дает возможность им экскретировать значительное количество конечных продуктов обмена веществ и очень точно регулировать элементный состав жидкостей внутренней среды организма.

II.КАНАЛЬЦЕВАЯ РЕАБСОРБЦИЯ

В почках человека за одни сутки образуется до 170 л фильтрата, а выделяется 1-1,5л конечной мочи, остальная жидкость всасывается в канальцах. Первичная моча изотонична плазме крови (т.е. это плазма крови без белков) Обратное всасывание веществ в канальцах состоит в том, чтобы вернуть все жизненно-важные вещества и в необходимых количествах из первичной мочи.

Объем реабсорбции = объем ультрафильтрата – объем конечной мочи.

Молекулярные механизмы, участвующие в осуществлении процессов реабсорбции те же, что и механизмы, действующие при переносе молекул через плазматические мембраны в других частях организма это диффузия, активный и пассивный транспорт, эндоцитоз и пр.

Есть два пути для движения реабсорбируемого вещества из просвета в интерстициальное пространство.

Первый - движение между клетками, т.е. через плотное соединение двух соседних клеток - это парацеллюлярный путь . Парацеллюлярная реабсорбция может осуществляться посредством диффузии или за счет переноса вещества вместе с растворителем. Второй путь реабсорбции - транцеллюлярный ("через" клетку). В этом случае реабсорбируемое вещество должно преодолеть две плазматические мембраны на своем пути из просвета канальца к интерстициальной жидкости - люминальную (или апекальную) мембрану, отделяющую жидкость в просвете канальца от цитоплазмы клеток, и базолатеральную (или контрлюминальную) мембрану, отделяющую цитоплазму от интерстициальной жидкости. Трансцеллюлярный транспорт определяется термином активный , для краткости, хотя пересечение, по меньшей мере, одной из двух мембран осуществляется посредством первично или вторично активного процесса. Если вещество реабсорбируется против электрохимического и концентрационного градиентов, процесс называется активным транспортом. Различают два вида транспорта - первично-активный и вторично-активный . Первично-активным транспорт называется в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Этот транспорт обеспечивается энергией получаемой непосредственно при расщеплении молекул АТФ. Примером служит транспорт ионов Na, который происходит при участии Na + ,К + АТФазы, использующей энергию АТФ. В настоящее время известны следующие системы первично активного транспорта: Na + , K + - АТФаза; Н + -АТФаза; Н + ,К + -АТФаза и Са + АТФаза.

Вторично-активным называется перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс, так реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества поступают в клетки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Na + . Этот комплекс (переносчик + органическое вещество + Na +) способствует перемещению вещества через мембрану щеточной каемки и его поступление внутрь клетки. Движущей силой переноса этих веществ через апикальную плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме клетки. Градиент концентрации натрия обусловлен непосредственным активным выведением натрия из клетки во внеклеточную жидкость с помощью Na + , К + -АТФазы, локализованной в латеральных и базальных мембранах клетки. Реабсорбция Nа + Cl - представляет наиболее значительный по объему и энергетическим затратам процесс.

Различные отделы почечных канальцев отличаются по способности всасывать вещества. С помощью анализа жидкостей из различных частей нефрона были установлены состав жидкости и особенности работы всех отделов нефрона.

Проксимальный каналец. Реабсорбция в проксимальном сегменте – облигатная (обязательная).В проксимальных извитых канальцах - реабсорбируется большая часть компонентов первичной мочи с эквивалентным количеством воды (объем первичной мочи уменьшается примерно на 2/3). В проксимальном отделе нефрона полностью реабсорбируются аминокислоты, глюкоза, витамины, необходимое количество белка, микроэлементы, значительное количество Na + , K + , Ca + , Mg + , Cl _ , HCO 2 . Проксимальный каналец играет главную роль в возвращении всех этих профильтровавшихся веществ в кровь с помощью эффективной реабсорбции. Фильтруемая глюкоза практически полностью реабсорбируется клетками проксимального канальца, и в норме за сутки с мочой может выделяться незначительное ее количество (не более 130 мг). Глюкоза движется против градиента из просвета канальца через люминальную мембрану в цитоплазму посредством системы котранспорта с натрием. Это движение глюкозы опосредовано участием переносчика и является вторично активным транспортом, поскольку энергия, необходимая для осуществления движения глюкозы через люминальную мембрану, вырабатывается за счет движения натрия по его электрохимическому градиенту, т.е. посредством котранспорта. Данный механизм котранспорта столь мощный, что позволяет полностью всасывать всю глюкозу из просвета канальца. После проникновения в клетку глюкоза должна преодолеть базолатеральную мембрану, что происходит посредством независимой от участия натрия облегченной диффузии, это движение по градиенту поддерживается за счет высокой концентрации глюкозы, накапливающейся в клетке, вследствие активности люминального процесса котранспорта. Чтобы обеспечить активную трансцеллюлярную реабсорбцию, функционирует система: с наличием 2 мембран, которые асиметричны по отношению к присутствию переносчиков глюкозы; энергия выделяется только при преодолении одной мембраны, в данном случае люминальной. Решающий фактор, состоит в том, что весь процесс реабсорбции глюкозы зависит в конечном счете от первично активного транспорта натрия. Вторично активной реабсорбции при котранспорте с натрием через люминальную мембрану, тем же способом что и глюкоза реабсорбируются аминокислоты , неорганический фосфат, сульфат и некоторые органические питательные вещества. Низкомолекулярные белки реабсорбируются путем пиноцитоза в проксимальном сегменте. Реабсорбция белка начинается с эндоцитоза (пиноцитоза) на люминальной мембране. Этот энергозависимый процесс инициируется связыванием молекул профильтровавшегося белка со специфическими рецепторами на люминальной мембране. Обособленные внутриклеточные пузырьки, появившиеся в ходе эндоцитоза, сливаются внутри клетки с лизосомами, чьи ферменты расщепляют белки до низкомолекулярных фрагментов - дипептидов и аминокислот, которые удаляются в кровь через базолатеральную мембрану. Выделение белков с мочой в норме составляет не более 20 - 75 мг в сутки, а при заболевании почек оно может возрастать до 50 г в сутки (протеинурия).

Увеличение выделения белков мочой (протеинурия) может быть обусловлено нарушением их реабсорбции либо фильтрации.

Неионная диффузия - слабые органические кислоты и основания плохо диссоциируют. Растворяются в липидном матриксе мембран и реабсорбируются по концентрационному градиенту. Степень их диссоциации зависит от рН в канальцах: при его снижении диссоциация кислотуменьшается , оснований повышается . Реабсорбция кислот увеличивается , оснований – уменьшается . При возрастании рН – наоборот. Это используют в клинике для ускорения выведения ядовитых веществ – при отравлении барбитуратами защелачивают кровь. Это увеличивает их содержание в моче.

Петля Генле . В петле Генле в целом всегда реабсорбируется больше натрия и хлора (около 25% фильтруемого количества), чем воды (10% объема профильтровавшейся воды). Это является важным отличием петли Генле от проксимального канальца, где вода и натрий реабсорбируются практически в равных пропорциях. Нисходящая часть петли не реабсорбирует натрий или хлор, но она обладает весьма высокой проницаемостью для воды и реабсорбирует ее. Восходящая же часть(как тонкий, так и толстый ее участок) реабсорбирует натрий и хлор и практически не реабсорбирует воду, поскольку она совершенно не проницаема для нее. Реабсорбция хлорида натрия восходящей частью петли отвечает за реабсорбцию воды в нисходящей ее части, т.е. переход хлорида натрия из восходящей части петли в интерстициальную жидкость увеличивает осмолярность этой жидкости, а это влечет за собой большую реабсорбцию воды посредством диффузии из водопроницаемой нисходящей части петли. Поэтому этот участок канальца получил название разводящий сегмент. В результате жидкость будучи уже гипоосмотичной в восходящей толстой части петли Генле(вследствие выхода натрия), поступает в дистальный извитой каналец, где продолжается процесс разведения и она становится еще более гипоосмотичной, так как в последующих отделах нефрона органические вещества не всасываются в них реабсорбируются только ионы и Н 2 О. Таким образом, можно утверждать, что дистальный извитой каналец и восходящая часть петли Генле функционируют как сегменты, где происходит разведение мочи. По мере продвижения по собирательной трубке мозгового вещества канальцевая жидкость становится все более и более гиперосмотичной, т.к. реабсорбция натрия и воды продолжается и в собирательных трубках, в них происходит формирование конечной мочи (концентрированной, за счет регулируемой реабсорбции воды и мочевины. Н 2 О переходит в интерстициальное вещество согласно законам осмоса, т.к. там более высокая концентрация веществ. Процент реабсорбции воды может широко варьировать в зависимости от водного баланса данного организма.

Дистальная реабсорбция. Факультативная, регулируемая.

Особенности :

1. Стенки дистального сегмента плохо проницаемы для воды.

2. Здесь активно реабсорбируется натрий.

3. Проницаемость стенок регулируется : для воды - антидиуретическим гормоном, для натрия - альдостероном.

4.Происходит процесс секреции неорганических веществ.

Рассказать друзьям